
Lecture 13

· Images of CMB

· Review
=>cosmological theory of perturbations

Chapter 2, 4, 5.1, 504, 5.5

(Chapter 9 - details]

· CMB anisotropies (continued),
primordial spectrum (5.4)

· Inflation (homogeneous approximation)
->motivation (generation of Big-bang initial

conditions)

-> Modes exiting horizon

->slow-roll inflation
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We they got a closed -form
equation for R:
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Similar to the wave equation.

Superhorizon modes a constant

Subhorizon in RD:
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·We discussed evolution of initial
conditions from Big Bang singularity
until the period when they can

be observed.

· Results of observations give
8 - 10

-
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-> perturbations are small and

approximately gaussian
-> they are correlated on

super-
horizon scales

-> they havea relatively simple
power-spectrum.

· This does not look like a

genere explosion "Big bary" and
sugges
Is to look for 9

simple theory that preceeds the

Big Bang



· The most popular candidate is

Inflation - a period ofquasi-
- exponential expansion before the BB.

· There are numerous microscopic
realizations o inflation that lead
to similar observations

· We will discuss aparticular
model-single field slow-roll inflation
first in the homogeneous approximation

· Then nextlecture) we will show

that quantum mechanics creates

classical perturbations that naturally
have the required properties.



dS recap (lecture 2)

r
=-1, or cosmological constant

case,that slicing,
x =
const ,a =ent

M =E in our

notation.
there is

no singularity at t= -c (R =const)

Global de Sitter can be obtained

using closed slicing:

+- a =GcshH+
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We are interested in the expanding part
of de Sitter space.
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· Problem: de Sitter space, is
produced by a rigid cosmological
constant lasts forever-matter Or
radiation never dominates
-

H =Hr.F&n +Mlz + Riad (Itz)"
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·Solution.

Inflation =1 +"clock"

clock tells when I "decays"
(this leads to some to dependence of 11

- quasi de Sitter space

A concreterealisation: single-field
slow-roll inflation

rpe...orabperrednet
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inslation inflation I
starts ends

reheating: energy ~ A gets transmitted into
radiation 14 A
and matter



Universe "heats up" (is scalar field a
surprise?]

· V(e) does not need to have such

a particular loom, but good to
imagineit for simplicity.

S =SdYFg(grodtOr-VIel],

Tr ==Ordrt-gro

We first use anapproximation a =eH+

i +3Hi +v(e) =0

x
==i2 +V(e)

p
==i - v(e)



=(i+V(e)
slow roll approximation:
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Now EOM simplifies:
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->I = - ++
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Let usexpress the condition ()

purely in terms of the potential:

(e (1)

Now let us express condition
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(1) and (2) are called slow-well

conditions on the potential.
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